Nonlinear Kantorovich Problems with a Parameter

نویسندگان

چکیده

We consider nonlinear Kantorovich problems with marginal distributions and cost functions depending measurably on a parameter prove that there exist optimal transportation plans are also measurable respect to the parameter. Unlike classical linear problem of minimization integrals given function plans, we deal functionals in which integrands depend plans. Dependence conditional measures is allowed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hypersingular nonlinear boundary-value problems with a small parameter

For the first time, some hypersingular nonlinear boundary-value problems with a small parameter ε at the highest derivative are described. These problems essentially (qualitatively and quantitatively) differ from the usual linear and quasilinear singularly perturbed boundary-value problems and have the following unusual properties: (i) in hypersingular boundary-value problems, super thin bounda...

متن کامل

Parameter Identification for Nonlinear Ill-posed Problems

Since the classical iterative methods for solving nonlinear ill-posed problems are locally convergent, this paper constructs a robust and widely convergent method for identifying parameter based on homotopy algorithm, and investigates this method’s convergence in the light of Lyapunov theory. Furthermore, we consider 1-D elliptic type equation to testify that the homotopy regularization can ide...

متن کامل

Parameter estimation in nonlinear environmental problems

Popular parameter estimation methods, including least squares, maximum likelihood, and maximum a posteriori (MAP), solve an optimization problem to obtain a central value (or best estimate) followed by an approximate evaluation of the spread (or covariance matrix). A different approach is the Monte Carlo (MC) method, and particularly Markov chain Monte Carlo (MCMC) methods, which allow sampling...

متن کامل

An optimal analytical method for nonlinear boundary value problems based on method of variation of parameter

In this paper, the authors present a modified convergent analytic algorithm for the solution of nonlinear boundary value problems by means of a variable parameter method and briefly, the method is called optimal variable parameter method. This method, based on the embedding of a parameter and an auxiliary operator, provides a computational advantage for the convergence of the approximate soluti...

متن کامل

Inverse Sturm-Liouville problems with a Spectral Parameter in the Boundary and transmission conditions

In this manuscript, we study the inverse problem for non self-adjoint Sturm--Liouville operator $-D^2+q$ with eigenparameter dependent boundary and discontinuity conditions inside a finite closed interval. By defining  a new Hilbert space and  using its spectral data of a kind, it is shown that the potential function can be uniquely determined by part of a set of values of eigenfunctions at som...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ???????? ?????????? ???????????????? ????????????

سال: 2022

ISSN: ['2304-1226']

DOI: https://doi.org/10.26516/1997-7670.2022.41.96